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Exercise 1

Let ψ be a unit vector in L2 pRq such that xψ, x2ψ P L2 pRq. Prove that

xX2yψ ě pxXyψq
2 , (1)

where as we defined in class, X is the operator given by the multliplication by x and

xAyψ :“ xψ,Aψy. (2)

Hint: Use Jensen inequality.

Proof. Recall that Jensen inequality states that if µ is a probability measure on a mea-
surable space Ω, f is a real valued function and Ξ is a convex function from R to itself,
then we have

Ξ

ˆ
ż

Ω
f pxq dµ pxq

˙

ď

ż

Ω
Ξ ˝ f pxq dµ pxq .

Consider now the space Ω “ R. The measure |ψ pxq|2 dx is a probability measure because
ψ has L2-norm equal to 1. Now, if we consider f pxq “ x and Ξ ptq “ t2 in Jensen inequality
we get

pxXyψq
2
“

ˆ
ż

R
x |ψ pxq|2 dx

˙2

ď

ż

R
x2 |ψ pxq|2 dx “ xX2yψ.

Exercise 2

Let α :“ tαnunPZ be a sequence of complex numbers. Consider the Hilbert space of
the square integrable functions h :“ l2 pZq. Consider the operator that to the sequence
x :“ txnunPZ associate the sequence Mαx “ tαnxnunPZ.

Suppose that }α}8 :“ supnPZ |αn| ă `8. Prove that Ma is a well defined linear bounded
operator from h to itself and prove that }Mα} “ }α}8.

Proof. First notice that for any element of the sequence Mαx we get |αnxn| ď }α}8 |xn|.
As a consequence we get

}Mαx}h “

˜

ÿ

nPZ
|αnxn|

2

¸
1
2

ď }α}8

˜

ÿ

nPZ
|xn|

2

¸
1
2

“ }α}8 }x}h .
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Therefore Mα is well defined from h to itself and it is trivially linear. From the previous
inequality we also get that }Mα} ď }α}8.

To prove the equality, first define for any j P Z the element ej :“ tδj,nunPZ P h. We
get that }ej}h “ 1 and that Mαej “ αjej . Now, by definition of sup there is a sequence

tnjujPN such that
ˇ

ˇαnj

ˇ

ˇÑ }α}8 as j Ñ `8, and we then get

}α}8 “ lim
jÑ`8

ˇ

ˇαnj

ˇ

ˇ “ lim
jÑ`8

›

›Mαenj

›

›

h
ď lim

jÑ`8
}Mα}

›

›enj

›

›

h
“ }Mα} ,

concluding the proof.

Exercise 3

Consider the Hilbert space h :“ L2 pRq. And the operator H define

D pHq :“ H2 pRq “
!

ψ P L2 pRq | k2
pψ P L2 pRq

)

H “ ´
~2

2m

B2

Bx2
` V pXq ,

where the operator pV pXqψq pxq “ V pxqψ pxq, with

V pxq :“

"

´C if |x| ď A,
0 if |x| ą A,

(3)

and with A and C positive constants. Consider E P p´8,´Cs and prove that there is no
nonzero ψE P D pHq such that

HψE “ EψE . (4)

Proof. Suppose there exists E such in the text of the exercise. Given that ψE ‰ 0 we can
assume that }ψE}h “ 1 As a consequence we get

E “ xψE , EψEy “ xψE , HψEy “ xψE ,´
~2

2m

B2

Bx2
ψEy ` xψE , V pXqψEy.

Given that ψE P D pHq we can integrate by part the first term and obtain

xψE ,´
~2

2m

B2

Bx2
ψEy “

~2

2m
x
B

Bx
ψE ,

B

Bx
ψEy “

~2

2m

›

›

›

›

B

Bx
ψE

›

›

›

›

ě 0.

On the other hand we have

xψE , V pXqψEy ě ´ |xψE , V pXqψEy| ě ´ }V }8 }ψE}
2
h “ ´C.

Given that E P p´8,´Cs we get

´C ě E ě xψE ,´
~2

2m

B2

Bx2
ψEy ` xψE , V pXqψEy ě xψE , V pXqψEy ě ´C,
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and therefore E “ ´C.

Now as we saw in class the function ψE needs to satisfy the following equation

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

´
~2

2m
ψ2E “ ´CψE if |x| ď A,

´
~2

2m
ψ2E “ pC ` EqψE “ 0 if |x| ą A,

lim
xÑ˘A´

ψE pxq “ lim
xÑ˘A`

ψE pxq ,

lim
xÑ˘A´

ψ1E pxq “ lim
xÑ˘A`

ψ1E pxq .

Suppose now x P p´8,´Aq. Then we get ψE “ c0` c1x. Given that ψE P h “ L2 pRq, we
then get that c0 “ c1 “ 0. Proceeding similarly for x P pA,`8q we get that ψE pxq “ 0
for any |x| ą A.

So ψE solves
#

ψ2E “
2mC

~2
ψE if |x| ď A,

ψE p˘Aq “ ψ1E p˘Aq “ 0.
(5)

Now the solution to the differential equation is ψE pxq “ c`e
p
?

2mC{~qx ` c´e
´p
?

2mC{~qx.
From the fact that ψE p´Aq “ ψE pAq we get

pc` ´ c´q sinh

˜?
2mC

~
A

¸

“ 0,

which in particular implies c` “ c´. As a consequence we get

ψE pxq “ 2c` cosh

˜?
2mC

~
x

¸

.

Using the fact that ψE pAq “ 0 we get c` “ 0, implying that the unique eigenfunction
corresponding to E is the zero vector, which is absurd and concludes our proof.

Exercise 4

Let h, H and D pHq as in Exercise 3. In class we saw that for any E P p´C, 0q there is
always at least one nonzero even solution ψE to the problem HψE “ EψE .

Prove that if A
?

2mC~ ď π
2 there are no nonzero odd solutions, and for larger values of

C there is always at least one.

Proof. Proceeding as in class it is easy to see that any odd solution ψE to HψE “ EψE
is such that

ψE pxq “

$

&

%

ce´
?

2m|E|

~ px´Aq if x ą A,

´ce

?
2m|E|

~ px`Aq if x ą A.
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This explicit form of the solution outside the ball |x| ď A gives us boundary conditions
for the problem that the solution needs to solve inside the ball:

$

’

’

’

&

’

’

’

%

´
~2

2m
ψ2E “ pC ` EqψE ,

ψE p˘Aq “ ˘c,

ψ1E p˘Aq “ ´

a

2m |E|

~
c.

(6)

Out of convenience, we define, similarly as in class, the constants κ :“ p2mCq {~2 and
ε :“ ´p2mEq {~2. We then have that E P p´C, 0q if and only if ε P p0, κq.

We are then looking for the odd solution to the problem

$

&

%

´ψ2E “ pκ´ εqψE ,
ψE p˘Aq “ ˘c,
ψ1E p˘Aq “ ´

?
εc.

A generic solution for this problem is of the form ψE pxq “ α sin
`?
κ´ εx

˘

`β cos
`?
κ´ εx

˘

,
with α and β to be determined. Given that our function is odd, we have that β “ 0. The
boudnary conditions then gives us the following relations:

"

α sin
`?
κ´ εA

˘

“ c,
α
?
κ´ ε cos

`?
κ´ εA

˘

“ ´
?
εc.

If c “ 0, the first equation tells us that if we do not want the trivial solution,
?
κ´ εA “

ηπ, with η P Z. This implies that cos
`?
κ´ εA

˘

“ ˘1, and applying this to the second
equation we would deduce that κ “ ε, which is not possible. So c ‰ 0 if and only if α ‰ 0.
Suppose then c ‰ 0 (and therefore α ‰ 0). Dividing the second equation by the first one
we then get the following matching condition

?
κ´ ε cot

`?
κ´ εA

˘

“ ´
?
ε.

Now, if
?
κA ď π

2 we get that
?
κ´ εA P

`

0, π2
˘

, and as a consequence the term on the
left of the matching condition is strictly positive. On the other hand the term on the right
is strictly negative, therefore the matching condition cannot be satisfied and there is no
odd solution to the problem.

Consider now
?
κA ą π

2 ; define the interval I :“
`

max
 

0, k ´ π2{A2
(

, k ´ π2{4A2
˘

and
the following mapping:

ξ : I Ñ R
ε ÞÑ

?
ε`

?
κ´ ε cot

`?
κ´ εA

˘

.

If max
 

0, k ´ π2{A2
(

“ 0 then we have that
?
κA ď π and cot

`?
κ´ εA

˘

P p´8, 0q; in
particular

ξ pIq “

˜

´
?
κ
ˇ

ˇcot
`?
κA

˘ˇ

ˇ ,

c

κ´
π2

A2

¸

.
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If max
 

0, k ´ π2{A2
(

“ k ´ π2{A2 then we have that

ξ pIq “

˜

´8,

c

κ´
π2

A2

¸

.

In both cases 0 P ξ pIq and we have that there is a solution to the matching conditions,
which implies the existence of a nontrivial odd solution.
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