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Exercise 1

Let ¢ be a unit vector in L? (R) such that x1), 22y € L? (R). Prove that

X%y = ((X)?, (1)
where as we defined in class, X is the operator given by the multliplication by z and
(Ay = W, AY). (2)

Hint: Use Jensen inequality.

Proof. Recall that Jensen inequality states that if p is a probability measure on a mea-
surable space €2, f is a real valued function and = is a convex function from R to itself,
then we have

=([r@a@) <[ zor@dn).

Consider now the space Q = R. The measure |¢ ()| dz is a probability measure because
1) has L?-norm equal to 1. Now, if we consider f (r) = z and = (¢) = 2 in Jensen inequality
we get

(@ = ([ = w<x>|2da:)2 < [l @l ae = 2.
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Exercise 2
Let a := {an},c; be a sequence of complex numbers. Consider the Hilbert space of
the square integrable functions b := [? (Z). Consider the operator that to the sequence

x := {Tp}, .y associate the sequence Mox = {0nTn},,cz-

Suppose that ||a|,, := sup,ez |an| < +00. Prove that M, is a well defined linear bounded
operator from b to itself and prove that |M,| = [o],,.

Proof. First notice that for any element of the sequence M,z we get |an,zn| < |a, |25
As a consequence we get

HMabe = (Z |O‘n$n‘2>
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Therefore M, is well defined from b to itself and it is trivially linear. From the previous
inequality we also get that [M,| < [lof|,-

To prove the equality, first define for any j € Z the element e; := {§;.}, ., € b. We
get that [le;||, = 1 and that Mye; = aje;. Now, by definition of sup there is a sequence

{”j}jeN such that |Oénj| — |a,, as j — 400, and we then get

ol =t Jan,| = T [Maco, |, <l 000 e |, = 108

concluding the proof.

[
Exercise 3
Consider the Hilbert space b := L? (R). And the operator H define
D(H) := H?(R) = {¢ e L2(R)| k2 e L2 (R)}
n? o2
==z TV,
where the operator (V (X)) (z) =V (x) ¢ (z), with
| =C if |z <A,
Vi(z) '_{ 0 if [z > 4, (3)

and with A and C positive constants. Consider E € (—oo0, —C'] and prove that there is no
nonzero 1y € D (H) such that

Hyp = Eyp. (4)

Proof. Suppose there exists E such in the text of the exercise. Given that ¥ g # 0 we can
assume that [¢p, =1 As a consequence we get

2 2
0 by + (i, V (X) ).

2m 0z

E =g, EYE) = Yp, HYE) = (Yr, —

Given that ¥ € D (H) we can integrate by part the first term and obtain

K2 02 K2 0 0 K| o
Vg, —%w¢E> = %<%¢E7 %T/JE> = om %¢E = 0.

On the other hand we have

W,V (X)Yr) > = |Wp, V (X) ¥p)| = = [Vy, [l = —C.

Given that E € (—o0, —C'] we get

h? 02

~C2 B>y o

V) + We, V(X)Yp) = Wp, V (X)vE) = —C,



and therefore £ = —C.

Now as we saw in class the function g needs to satisfy the following equation

(", .

_%QpE = —Cp if |z| < A,
I3

—5-VE = (C+E)¢p =0 if |z > A,
lim ¢p(x)= lim ¢g(x),

r—>+A~ rz—+AtT
lim () = lim ().
aHiA_i/)E( ) gHiAJr?ﬁE( )

Suppose now € (—o0, —A). Then we get ¥ = cg + c1z. Given that ¢ € h = L? (R), we
then get that ¢y = ¢; = 0. Proceeding similarly for x € (A, +o0) we get that ¢¥g (x) = 0
for any |z| > A.

So g solves
e 2mC' .
{ E= 71@ if z] < A, (5)
Vg (+£A) = Y (£4) = 0.

Now the solution to the differential equation is ¥ g (x) = c+e( VamG/h)z o o= (V2mC/h)e

From the fact that ¢p (—A) =Yg (A) we get

v 2;”CA> -0,

(cy —c_)sinh (
which in particular implies ¢, = ¢_. As a consequence we get

v 2mC
W T

Yp (x) = 2¢4 cosh <

Using the fact that ¥g (A) = 0 we get ¢; = 0, implying that the unique eigenfunction
corresponding to F is the zero vector, which is absurd and concludes our proof.

O]

Exercise 4

Let b, H and D (H) as in Exercise 3. In class we saw that for any £ € (—C,0) there is
always at least one nonzero even solution ¢ g to the problem Hyg = EvE.

Prove that if Av/2mCh < Z there are no nonzero odd solutions, and for larger values of
C there is always at least one.

Proof. Proceeding as in class it is easy to see that any odd solution ¢ to HYgp = EYg
is such that
ce” @ (w—=4)

ve(@) = VEmIEL (1)

—ce

if £ > A,
if x > A.



This explicit form of the solution outside the ball |z| < A gives us boundary conditions
for the problem that the solution needs to solve inside the ball:

h2
—%w% = (C + E) ¢,

Ve (£A) = £c, (6)
2m|E
v (a) = - V2L,
Out of convenience, we define, similarly as in class, the constants x := (2mC) /A% and

g := — (2mE) /h?. We then have that E € (—C,0) if and only if £ € (0, k).

We are then looking for the odd solution to the problem

_w% = (H - 5) wEv
Vg (£A) = +c,
Vg (£A) = —/ec.

A generic solution for this problem is of the form ¢ (z) = asin (v/k — ex)+B cos (v — ex),
with « and 8 to be determined. Given that our function is odd, we have that 8 = 0. The
boudnary conditions then gives us the following relations:

{ asin (\//1—514) =c,
ok —ecos (Vi —eA) = —y/ec.

If ¢ = 0, the first equation tells us that if we do not want the trivial solution, /x — A =
nm, with n € Z. This implies that cos (v/k —€A4) = +1, and applying this to the second
equation we would deduce that x = ¢, which is not possible. So ¢ # 0 if and only if a # 0.
Suppose then ¢ # 0 (and therefore o # 0). Dividing the second equation by the first one
we then get the following matching condition

Vi —ecot (Vi —eA) = —y/e.

Now, if \/kA < § we get that \/k —cA € (O, %), and as a consequence the term on the
left of the matching condition is strictly positive. On the other hand the term on the right
is strictly negative, therefore the matching condition cannot be satisfied and there is no
odd solution to the problem.

Consider now y/kA > Z; define the interval I := (max {0,k — 72/A?} , k — 7?/4A?) and
the following mapping:

¢ 1 > R
e — e+ Vk—ccot (VE—cA).

If max {0,k — 72/A?} = 0 then we have that /A < 7 and cot (v/k — €A4) € (—0,0); in
particular

E() = <—\/E‘cot (VEA)| Ak — j;) :



If max {0,k — n?/A?} = k — 7%/ A? then we have that

&) = <*oo,x//£*j:;>.

In both cases 0 € £ (I) and we have that there is a solution to the matching conditions,
which implies the existence of a nontrivial odd solution. ]



